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ABSTRACT 

Suppose  t ha t  c~ > 1, 0 < R < c¢ and  t ha t  f is analyt ic  in [z[ < c~R with 

If(0)l >_ 1. It is shown t ha t  for a cons tan t  da depend ing  only on ~, 

log M( R, f)  <_ d~T( R, ])I/2T(~R, f)1/2. 

Therefore  if f is entire of order ,~ < co, log M(r, f)/T(r, f )  has  order at  

mos t  )~/2. These  resul ts  are shown by example  to be qui te  precise. 

1. I n t r o d u c t i o n  

Let f(z) be meromorphic in the complex plane. We will use freely the standard 

notation of Nevanlinna theory, including 

T(r, f), re(r, f), g(r,  f), log M(r, f)  . . . . .  

In addition, we define m+(r,f), 1 < p < co, by 

m+(r, f )  = ~ (l°g + If(reiO)l)PdO 
o 

It has long been of interest to compare the sizes of T(r, f)  and log M(r, f)  for 

entire functions. In 1932 R.E.A.C. Paley conjectured that  an entire function f(z) 
of order ,~ satisfies 

(1.1) lim log M(r, f )  < s i n  l r , ~ '  - -  

~-~---~ T(r , f )  - 7rA, ~ > ½. 

ReeeivedMarch 1, 1992 
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] 
This conjecture was proved by Valiron [10] and Wahlund [11] for A < 7 in 1935. 

The first complete proof was given by Govorov [3] in 1969. Petrenko [7] has 

established that the inequality (1.1) remains valid if the order A is replaced by 

the lower order # and f ( z )  is assumed to be meromorphie. 

The situation is quite different for entire functions of infinite order. In fact, 

for such functions 

T ( r , f )  = o( logM(r , f ) ) ,  r ---* co, 

is possible. An upper bound for log M(r, f )  in terms of T(r,  f )  was obtained by 

Shimizu [9] in 1929 when he showed that for each number k > 1 and each entire 

function f ( z )  

lim log M ( r, f )  = O. 
~--.~ T(r, f)[log T(r, f)]k 

Related results can be found in papers by C. T. Chuang [2], I.I. Marchenko and 

A. I. Shcherba [6], W. Bergweiler [1], and A. I. Shcherba [8]. 

We note that all the upper bounds mentioned above have exceptional sets. Less 

attention seems to have been given to obtaining upper bounds for log M(r,  f )  in 

terms of T(r, f )  having no exceptional set. From the results of W. K. Hayman in 

[5] it follows that for any increasing function g(t) there exists an entire function 

f ( z )  such that 

lim log M(r, f )  _ co. 
~-.oo g(T(r, f ) )  

This means that we cannot estimate log M(r, f )  from above in terms of T(r, f )  

for all r E (0, co) for the class of all entire functions. For entire functions of finite 

order, A. I. Shcherba [8] obtained in 1985 that for any number k > 0, 

lim l o g M ( r , f )  = O. 
r - ~  exp{kT(r,  f )}  

In this paper, we show that for an entire function f ( z )  of order A < co and 

r ~ r(e), 

(1.2) l o g M ( r , f )  ~_ r~+~T(r , f ) ,  e > O. 

Inequality (1.2) follows immediately from Theorem 2.2, which asserts that 

(1.3) log M(r,  f )  ~_ d~T(r, f)½T((~r, f)½, 
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for all entire f with I/(0)l _> 1 and all r > 0, where a > 1 and d~ is a constant 

depending only on (~. The inequality (1.3) improves the well-known inequality 

(1.4) l o g M ( r , f ) <  RD+~rT(R , f ) ,  O < r < R, 

which follows from the Poisson-Jensen formula. All the facts we mentioned above 

have analogues for m+(r, f ) .  

In section 3 we construct examples, using a technique which was introduced 

by W. K. Hayman [5] in his study of the comparative sizes of T(r, f )  and T(r, f ' )  

for meromophic functions and also used by A. I. Shcherba [8], to show M1 the 

results of section 2 are best possible. 

2. M a i n  R e s u l t s  

In this section we obtain upper bounds for log M(r, f )  in terms of the Nevanlinna 

characteristic for entire functions with no exceptional set of r. We first need the 

following estimate for 0log If(rei°)l/Or. 

LEMMA 2.1: Let 1 < ~ < e and let 0 < R < exp. Suppose that f ( z )  is analytic in 

Izl < 92R wSth I/(0)1 >_ 1, that / ( z )  has no zeros Sn Izl < R, and that O < 0 < 2~. 

Then for R/2  < r < R, we have 

T ( ~ 2 R , / )  0log l/(rei°)l < cz 
Or - R 

where 
6Z 

cz = (Z_ 1)5" 

Proof." Let an be the zeros o f f ( z )  and let w = re i ° ,R /2  < r < R, and 0 < 

/7 < 27r. Without loss of generality we may assume lanl ~ f i r  for all n. The 

differentiated Poisson-Jensen formula [4, p. 22] gives 

wf ' (w)  1 [,2~ 2w~Rei~ 
f (w)  = 2---~ Jo log If(~Rei~)l (/~Rei ~ _ w) 2 d~ 

Hence 

(2.1) 

+ Z ( ~--K-- ~-~ + ). 
I~l<nR w -  a n  ( ~ R )  2 - m~w 

Re L .f(~) J S(sT~--r)2 ~ II°gl/(77Re~)lld~° 
[(w) + ~ Re _---~ + la~tr ] 

la:l<nR ( I F R ~ l a " l r J  " 
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Since ~ = z/(z - a) maps the circle Izl = la[ to the line Re(() = ½, we have for 

la[ > r = [w[ that 

Re w < 2" 

By assumption, f(z) has no zeros in Izl < R. Therefore lanl _> R > r for all 

n = 1 ,2 , . . . ,  and we have 

2 

It is trivial to show for la~! < ~R that 

lan l r  r 

(2.3) (f~R) 2 -  la,,Ir <- ~R-----E-~r" 

By assumption, we have log If(0)l _> 0. Therefore Jensen's formula gives 

T(/3R, 1/f) = T(/3R, f) - log If(0)l _ T(/3R, f). 

Hence we obtain that 

(2.4) 

Observing that 

l log If(~Rei:)lld ~ <_ 2T(DR, f). 

0 log If(rei°)l 
Or 

[r::'(r:)] 
= R e [  ~ j, 

we deduce from (2.1), (2.2), (2.3), and (2.4) that 

(1 Olog[f(rei°)l < 4 /3R T(/~R,.f) + + -  
Or - ( Z R  - r )  2 Kr 

Since log/3 > ~-1 for 1 </3 < e, we have 
- -  2 

N(/32R, 1/f) < 
n(/3R, 1/f) <_ 

log/3 - 

Hence we finally obtain that 

Olog,f(re'°), < 4/3 (T(~_~ f ) )  ( R  
Or - (/3--'1) ~ ' + + 

6/3 T(fl2R, f) 
-< ((/3 Z ' l )  2 ) R 

This proves the lemma. 

1 \ 
} n(~R, 1/f). 

/3R - r } 

2T(/32R, f )  

We now use Lemma 2.1 to obtain our main results. 
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THEOREM 2.2: Suppose that 1 < a < e 2 and 0 < R < c~. Let f (z)  be analytic 

in [z[ _< aR with [f(0)l _> 1, and let 1 < p < ~ .  Then we have 

(2.5) log M(R,  f )  <_ d~T(R, I ) }T(aR ,  f ) }  

and 

(2.6) m ~ ( R , f )  < d~ ~ T (R , f )2p  T(aR,  f)2~ 

where 1 ! 
d~ = 4x/3a~(a ,  + 1) 

We show that the results of Theorem 2.2 are quite precise in Theorem 3.2 (a) 

and (b). 

Proof'. 

(i) Suppose first that f (z)  has no zeros in Izl < R. We choose 00 in [0,21r) so 

that 

logM(R, f )  = log If(Reie°)l > O. 

For -~ < R1 < R, we use Lemma 2.1 (with the choice f12 = a) and (1.4) to obtain 

/R ~ O log If(re ie°)l dr 
log M(R,  f)  = log If(Rlei°°)[ + Or 

1 

(2.7) /R ~ f ) dr <_ logM(R1, f )  + cflT(fl2RR' 
1 

2R T(fl2 R, f )  
<- R - R----~ T(R' f )  + (R - R1)cfl R 

Now choose R1 such that 

(2.8) R - R1 = c~T(fl2R, f )  . 

We claim that R1 > R In fact, by (1.4) _ _  "~. 

l ogM (R , f )  < ( f l -  1)2(fl 2 + 1) = ( f l -  1)(Z 2 q- 1) 

c,T(Z R, f )  - 6Z(Z2 _ 1) 6Z(Z + 1) 

e2 -t- 1 
< - -  

12 
< 1  

since 1 < fl < e. This establishes our claim. Hence it follows from (2.7) and (2.8) 

that 
l ogM(R , f )  < 4c~ T (R ' f )T ( f l 2R ' f )  1 logM(R, f ) .  

- log M(R,  f )  + 
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Therefore we conclude 

log M(R, f) < (8ca) ½ T(R, f) ½ T(fl2R, f)½. 

Since a=132,  we get 

log M(R, f) < daT(R, f)½T(o~R, f)½, 

where 

do~ 
4v"3a½(a½ + 1) 

(ii) In the general case, if a,~ are the zeros of f(z), set 

R 2 _ a-nz 
= S(z) ] - [  

la,,l<R 

Then 9(z) has no zeros in Izl < R, and Ig(0)[ _> 1. We may apply the reasoning 

of (i) to the function g(z) to obtain 

(2.9) log M(R, g) <_ d,~T(R, g)½T(aR, g)½. 

Since 

Ig(z)l = If(z) l  on Izl = R 

and 

Ig(z)l _< If(z) l  on I~l = ' ~ R ,  

we have 

(2.10) log M(R, 9) = log M(R, f), 

(2.11) 

and 

(2.12) 

T(R, 9) = T(R, f), 

T(aR, g) <_ T(aR, f). 

Hence it follows immediately from (2.9), (2.10), (2.11), and (2.12) that 

log M(R, f) <_ dc, T(R, f)½T(aR, f)½. 
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This proves (2.5). 

(iii) Finally, a simple observation gives (2.6). In fact, 

I fo 2~ [m+(R'/)lP = G (l°g+ [$(Re'°)lFdO 

1 fo 2'~ <- 2---~ (l°gM(R'f))P-ll°g+ [f(Re~°)ldO 

-- log M(R, f)P-aT(R, f)  < d~-IT(R, f ) ~ T ( ~ R ,  f ) ~ ' .  

This establishes (2.6) and the proof of Theorem 2.2 is complete. 

For entire functions of finite order, we now obtain upper bounds for log M(r, f)  
and m+(r, f)  in terms of T(r, f). 

COROLLARY 2.3: Let f(z) be entire of order A, 0 < A < c~. Then for any e > 0 
there exists a number R(e) such that 

(2.13) logM(R,f)  <_ R~+'T(R,f) ,  R > R(e), 

and 

(2.14) m+(R, f)  <_ R~u~* ~+~T(R, f), R > R(e). 

We show that the results of Corollary 2.3 are best possible in Theorem 3.2 (c). 

Proo£" Without loss of generality we may assume that If(o)l _> 1. If not, 

consider the function f(z) + 2. By setting a = 2 in (2.5), we get 

(2.15) logM(R,  f )  < 4v/-6(v/-2 + 1)T(R, f)½T(2R, f)½ <_ 40T(2R, f)½T(R, f). 

By the definition of order, we have 

(2.16) T(2R, F)  = 0((2R) ~+~) = 0(R~+~), R ~ oo. 

Hence (2.13) follows from (2.15) and (2.16). 

Now, by setting a = 2 in (2.6), we get 

p+l a.r./ 
(2.17) m+(R'f)  <- [4v~(x/2+ 1)] , T(R, f )  2~ T(2R, f)  2~ 

p-1 
< 40T(2R, f )  ~p T(R, f). 

Hence (2.14) also follows from (2.16) and (2.17). 
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3. Examples 

We now proceed to construct examples of entire functions which show that Theo- 

rem 2.2 and Corollary 2.3 are quite precise. Our examples are based on techniques 

introduced by Hayman [5]. We let 

= = , c > l .  

Since Re[l_--~ ] is positive and harmonic in ]z[ < 1, we have, for 0 < k < 1, 

T ( k , f )  = logf(0) = c 

and 

We set 

and 

c 
log M(k,  f )  - 

l - k "  

o o  

: ( z ,  c) = 
n = 0  

N 

PN(Z,C) = E anzn, 
n = 0  

18( ) 
We need the following two lemmas of Hayman. 

LEMMA A [5]: I f  KN > 1 and ]z[ = r, then we have 

(a) IPN(Z,C) - f ( z , c ) l  < 1, r < KN, 

(b) [T(r, P g ( z , c ) ) - c  I < log2, r_< KN, 

(c) T(r, Pg(z , c ) )  <_ 17(cN)½ + g l o g + r ,  r > KN. 

We suppose that rn, Cn, and Nn are increasing sequences satisfying the follow- 

ing conditions for all positive integers n: 

(3.1) (i) rl = 1, rn+l > 2rn, 

and 

(ii) c,~ _> n, 

(iii) N,~ > 512cn, 
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where the Nn are positive integers. We set 

(3.2) F(z)  ~'~e-4~"PN. z - ~  ~ C n  

n = l  

and have 

LEMMA B [5]: With the above notation F(z )  is an entire [unction. Further, i f  

rv /2  <_ r < r~+1/2, we have, for Izl = r and v >_ 2, 

(a) 
v - - 1  

and 

(b) ~=,+le-4~"pg.  ~ , c ~  < 1. 

In addit ion we need the following elementary lemma. 

LEMMA 3.1: I f  1 < p < oc and 0 < k < 1, then 

Proof." 

(k, f (z ,  c)) > 

If  ]01 < 1 - k, then we have 

2 . ( 1  - 

1 ) 1 - k c o s 0  1 - k 

Re 1 - k e  ie = l + k  2 - 2 k c o s 0  >- ( l - k )  2 + 2 k ( 1 - c o s 0 )  

1 - k  1 - k  1 

> (1 - k) 2 + 2k(02/2) >- (1 - k) 2 + k(1 - k) 2 > 2(1 - k--------~" 

Hence 

1 7r C P 

[m+(k,f(z,c))] "= ~ /_ .  [log + exP(l_ke,.)] dO 

-/2[(' )]' :_- = - -  Re _)¢ei 0 dO > - k) 27r ~ 1 - ZT~ 2(1 2(1 k) 

= 7r l'pcp(lz - k)l-P" 

This proves the  lemma. 

Now we are prepared to  prove 
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THEOREM 3.2: Let  qo(r) be any positive increasing function such that 

and let 0 < A < c~. Then there exists an entire function Fl(z)  such that 

T(r,  F1) = O(~(r)( logr)2) ,  r --* co, 

an entire function F~(z) of  order A and an entire function F3(z) of infinite order 

for which i f  ~ > O, 1 < a < 2, and 1 < p < oc, we have 

(a) lim lo~ M(r,Fi) 
r---*vo T(r,FI)½+CT(c~r,F~)½ -~ ~" O0 

and 

(b) 

and 

(c) 

and 

lim m+(~'F~), _, = oc, 
r--*oo T(r,Fi) ~+'T(ar ,F~) ~7-~v ~ -~ 

log  M ( r ,Fi  ) 
lim T(ar,Fi) >- ~ - 1 ( 4 - 3 a )  

i = 1, 2, 3; 

lim T(~, ,a)  > ~ ~ - 4(a  - 1) , 
1"---~ OO 

li--~ lo~ Mff,F2) 
~ - ~  T(~,F2)~½ = O0 

i = I, 2, 3; 

lira mP+(r'F2) - 1  ~ CO. 
r--oo T ( r , F 2 ) r ~ - ~  x 

Remarks:  

(i) We observe tha t  the conclusions in (b) are of interest only for values of a 

slightly greater  than  1. 

(ii) For entire functions f ( z )  with 

(3.3) T(r,  f )  = O(log r)  2 as r --+ oo, 
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W. K. Hayman has shown in [5] that 

419 

(3.4) lim log M(r, f )  _ 1. 
~--.o~ T(r , f )  

Parts (a) and (b) of Theorem 3.2, applied to F1, show that in general (3.4) 

fails for entire functions not satisfying (3.3). 

(iii) By considering F1, F2, and F3, we see that inequalities (a) and (b) can 

occur for entire functions of any growth rate exceeding (3.3). 

(iv) Part (a) shows that if in Theorem 2.2 we consider possible pairs of exponents 

for T(R, f )  and T(aR, f )  with sum 1, then the choice of exponent ½ on 

T(aR, f )  in (2.5) and ~ on T(aR, f)  in (2.6) cannot be improved. 

(v) From part (a) we deduce that 

_ _  E l )  
l im T(r, F1) -oo ,  

which shows that even a weakened form of (3.4) obtained by replacing the 

numerator by m + (r, f )  does not hold without the restriction (3.3). 

(vi) In part (b), we see that the constant d~ of Theorem 2.2 is quite precise in 

the sense that (2.5) and (2.6) do not hold for any choice of d~ satisfying 

(vii) Part  (c) shows that in Corollary 2.3 the exponents on R on the right side 

of (2.13) and (2.14) cannot be decreased. 

Proof." Suppose that the sequences rn, cn and Nn satisfy (3.1) as well as 

(3.5)(i) rl = 1, r~+l _> 4r . ,  

(ii) 

and 

(iii) 

nNn-llogrn = o(cn), n --* oo, 

N~ 

Cn 

- -  ---* 00~ a ~  n----~ o o .  
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We also assume that  F(z) is constructed as in (3.2) with these new sequences. 

Later we will make specific choices of cn, r,~, and Nn for each Fi, 1 _< i _< 3, 

satisfying (3.5) and of course (3.1). Next we set, for all positive integers n, 

Rn = rnKN~ and S~ Rn 
C~ 

where 

Then we have 

(2cn ~ ½ 1 
K N " = I - S k . - ~ ]  >5" 

LEMMA 3.3: With the above notation, for r~/2 < r < R~, v >_ 2, we have 

logM(r,F)>_logM ~ I(z,~) - { 4 + o ( 1 ) } ~ ,  ~ , ~ ,  (a) 

and 

(b) 

Proof: 

m+(r ,F)>m + ,f(z,  cv ) - {4+o(1)}av ,  v--*cx). 

To prove this lemma, we suppose that  ]z] < R~ and n < v - 1. Then by 

the inequality (1.4) and Lemma A (c) we obtain 

log PN~ ( ~ , c ~ )  I <_ logM (~,PN~(Z,C~)) <_ 3T (2-~,PN~(z,c~) ) 

< 3 (  17(cnNn)½ + N ' * l ° g + (  r ~ ) }  _ 2 < 3{17Nv_1 + N~-I  log(2R~)} 

_< 60N~_ 1 log R~. 

Therefore 

(3.6) e -4c~ PN, , Cn < (v - 1% 
n-~-I 

Hence we deduce from Lemma A (a), Lemma B (b) and (3.6) that  for r~/2 <_ 
Izl < R~, 

(3.7) 

_,c.p z [ cv) Rv 
n # v  
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From familiar properties of log +, we conclude from (3.5) (ii) and (3.7) that 

log+ ]F(z), >_ {log+ [] (-~,c~.) l - 4cu } - log+ v - 6ONu-l logR. - log2 

(3.8) 
: l o g  + f ( -~ ,cv ) l - (4+o(1) )c~ ,  v ~ .  

The conclusion of Lemma 3.3 is immediate from (3.8). 

We now estimate T(R~, F) and T(aR~, F) from above and log M(R~, F) and 

m+(R~, F) from below. Recall that R~ = Ku~r~ > r,/2 and 

1 

KN~ = 1 --8 (-~v 2 (3.9) 

Since by L e m m a A  (b) 

[ R~,e-4c~IPN~(z ,  cv ) ]  (__ T(KN~,PN~(Z,C~,)) <__ C~, + log2, T 
\ rv / 

we deduce from Lemma B (a) and (.3.5) (ii) that 

T(R~,F)<_T ,e-4c~pN~(Z,C~) + E N n  l o g - - + 2  
\ v n~l  rn 

(3.10) 

< (c~ + log2) + (v - 1)N~_,(logR~ + 2) < (1 + o(1))c~, v --, c¢~. 

Since by (3.5) (i) 
rv --  < Rv < aRv < 2r~ < rv+____~l, 
2 2 

we may choose r = aR~ in Lemma B (a) and then obtain from Lemma A (c) 

and (3.5) that 

(3.11) 

( ) T(aR~,F)<_T(aKN~,e-4C~pN~(Z, Cv))+ E N n  log + 2  
n=l rn 

<_ T(agy~, PN~(Z,C,)) + (u -- 1)N~_l(logr~ + loga  + 2) 

_< 17(c~N~)½ + N~ log+(aKN~) + o(c~) 

< (1 + o(1))N~loga,  u--~ ec. 
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Recall that 

(3.12) logM(gN~,f(z,c~,)) = cv 
1 - K/%" 

Thus we deduce from Lemma 3.1, Lemma 3.3, (3.5) (iii), and (3.9) that, for 

u>2~ 

log M(R,,, F) k log M(K1%, f(z, c,,)) - {4 + o(1)}c, 

(3.13) _ c v  {4+o(I)}c. { ~  )} I , 
i - KN----------f = - o(I cg N~, v --* co, 

and 

m+(R~,, F) >_ m+(KN~, f(z, cv)) -- {4 + o(1)}c, 

1 { cv } {4+o(1)}cv 
- -  

> 2rr ( 1 - K N v )  " 
(3.14) 1 [ - - \  p ~+1 

= - { 4  + o(1)}c  

> o(1 c~ 2" N~ 2 ' ,  v ~ c o .  
- 16v/~Tr 

Now recall that 1 < a < 2 and S.  = R./a = rvKN~/a. Since Klv~ ~ 1 as 

g ~ co, there exists a positive integer vo such that if v > v0, then 

r._.~ < S,  < R~. 
2 --  

Hence we may choose r = Sv (v _> vo) in Lemma 3.3 to obtain by Lemma 3.1 

and an obvious variant of (3.12) that 

log M(S~,F) > log M ( ~ , f ( z , c~) )  - {4 + o(1))}c~ 

c~ {4 + o(1))}cv (3.15) - 1 - gN./a 

- { a : k N . a  - 4 - o ( 1 ) } c . ,  v ~ c o ,  

and 

(3.16) 

m+(S'v,F) >_ m + ( S~,f(z, cv)}" - {4  + o(1))}cv 
\ rv I 

1 a P - 4 - 0  1 cv, 
= O~ - - - K N ~  

V--..4 00 .  
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Thus we conclude by (3.10), (3.11), (3.13), (3.14), and (3.5) (iii) that for any 

¢ > 0 ,  

li--~ l o g  M(r, F )  > li---~ l o g  M(R~, F) 
~--.o~ T(r, F)½+~T(ar, F)½ -~ - ~-'*~ T(R~, F)½+~T(aR~, F)½ -~ 

(3.17) > lim { 1 / 8 v ~ -  o ( 1 ) } J N )  
- ~,--oo [ {1  + o ( 1 ) } c ~ , ] ½ + E [ { 1  + o ( 1 ) } N ~ ,  l o g a ] ½  - ~  

= l i m  8v~(loga)½_ e = co, 

and 

(3.18) 

> lim 

li-m m + (r, F)  
r--.o~ T(r, F) p T(ar, F) 

> li---m m+(R~'F) 
- ~--'~ T(R~, F) 2L+~+~T(aRv, F)~-~ ~-~ 

v + l  ~ - 1  

{1/16v~Tr - o(1)}cf  ~ N~, 2~ 

- u--oo [{1 + o(1)}c~] 2~'~ +e[{1 + o(1)}Nv l o g a ] ~  +~ 

= li---m (N~c;1)e ----CO. 
1645 (1og 

Thus such an F 

conclude by (3.10) and (3.15) that 

(3.19) 

satisfies conclusion (a) of Theorem 3.2. Noting aS~ = R~, we 

lim logM(r,F) > ~ logM(S~,F) > ~ {a -~c~  4 - o ( 1 ) } c ~  
~--.~ T ( a r ,  F )  - ~ - ~  T ( R u ,  F )  - ~-.o~ {I +o(1)}c~ 

a 4 - 3a 
- -  - -  4 = - -  

a - 1  a - 1  

We also have by (3.10) and (3.16) that  

li---m m+(r' F) > lim m+(S~, F) 
r--.~ T(ar, F) v-.¢¢ T(R~, F) 

1 1 /  '~ ~P-~ - 4 -  o(1)}cL, 
(3.20) > li--m L 2 ~ - K N v J  

- u-.oo {i + o(1)}cu 

(1),{1 
= - -  - 4 >  - 4 ( a -  1 . 

27r 

Thus such an F satisfies conclusions (b) of Theorem 3.2. 
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Finally, our functions Fi(z) (i = 1, 2, 3) are to be constructed just  as F(z) is, 

with carefully chosen sequences rn, c , ,  and Nn satisfying (3.1) and (3.5). 

We first construct  Fl(Z) by choosing r,~,c~, and Nn as follows. We set r l  = 

ca = 1 and N1 = 512. Suppose tha t  rn, cn, and Nn have been chosen for n < u. 

Then  we choose r .  so large tha t  

(3.21) (i) rv > 4r~-1 and ~ o ( 2 ) >  u3N~_I, 

where ~o(r) is the function occurring in the hypothesis of Theorem 3.2. This is 

possible since ~o(r) --* c¢ as r --* c¢. We then set 

(3.21) (ii) 

and 

(3.21) (iii) 

N~,= [ ~ o ( 2 )  logrv ] , 

ct, = Nv/512v. 

We next  construct  F2(z) by choosing r , ,  c , ,  and N ,  as follows. Let r l  = cl = 1 

and let N1 = 512. Suppose tha t  rn,  cn, and Nn have been chosen for n < v. Then  

we choose r~ so large tha t  

(3.22) (i) logr~ > vN~-lrv-1. 

We set 

(3.22) (ii) c~ = ( logr~) 2, 

and 

[rvc~]. (3.22) (iii) U~ = ~ 2 

Finally we construct  F3(z) by choosing rn,c~, and Nn as follows. For n _> 1, 

we set 

(3.23) (i) rn = 4 n - l ,  

(ii) c,~ =- (n! )  4, 
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and 

(iii) Nn = 512ncn. 

It is easy to show that the choices of sequences in (3.21), (3.22), and (3.23) all 

satisfy (3.1) and (3.5). Hence Fi(z) (1 < i < 3) are entire functions satisfying 

the conditions (a) and (b) of Theorem 3.2. 

It remains to estimate the growth properties of Fi(z). From Lemma A(c), 

Lemma B(a), and (3.5) (iii) we deduce for i = 1, 2 and r~/2 < r < r~+1/2 that 

( r , e - t~PN (z,c.))  +O(uN._t logr)=O(N.  logr), r-+oo. T(r, F,) ~ T -~ 

Therefore by (3.21) (ii) and (3.22) (ii), (iii), we have 

T(r, F1) = O([~o(r~/2)logr~]logr) = O(~o(r)(logr)2), r --+ oo, 

and 

T(r, F2) = O( ~ 2 [r,c,] logr) = 0(rX(logr)5), r ~ 00. 

Hence Fl(Z) satisfies the required growth condition and F2(z) has at most order 

A. On the other hand, note that the Maclaurin coefficients an of f(z ,  c,) are all 

positive. Since 

f (z ,c . ) (n)= exp ~ = ~_- -z )2exp  

exp 1_-77 + . . . ,  
° 

we estimate for all n that 

a n ~_ c~,e c~. 

Hence we have 

log M(er~, F2) = log F2(er.) >_ log PN~ (e, c.) -- 4c~ 

> log(aN~e N') new > (1 o(1))N.  (1 ~ 2 _ - _ - = - o ( 1 ) ) % c . ,  u ---+ oo. 

Thus F2(z) has order A and satisfies the growth condition of the theorem. 

Next we want to show that F3(z) has infinite order. By virtue of (3.13) and 

(3.23), we have 

1) /) - c~N.  > - o ( 1  (v!) 4, u--~cxD, _ o ( 1  : : 
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and 

R~ < r ,  = 4 "-1 .  

Hence for any positive number  ~, 

log M ( R ~ ,  F3) > ~ = oo. 
li~moo R e - ~ 4e(~-1) 

Thus  F3 has infinite order. 

Final ly we need to show tha t  F2(z) satisfies (c) of Theorem 3.2. By (3.10), 

(3.13), (3.14), and (3.22) we have 

li--m l ogM(r ,  F 2 ) >  F-~ l o g M ( R , , F 2 ) >  E ( s - ~ - ° ( 1 ) ) J N )  

,--.oo T(r ,  F2)r'~ - ~--.oo T(R~,  F2)R~ - ~-~oo (1 + o(1))c~R~ 
1 1 1 

_ _  C 2 A 2 _ _  C~u 
_> lim ~ (r~c~) ~ l im = c~, 

and 

_ _  F:)  
lira . . . .  ~ _> lim 

r--*zo l ( r , l~2)r  p v--.c¢ 

(Rv, F2) 

> li---m ~ - o(1) c ~ '  N,, 2~ 
w 

(1 + o ( 1 ) ) c . R .  

2p A 2 2 __ Cl/2P 

> lim c~ (r~%) p = l i m -  
- ~-.oo ~ L:_~ ~-.oo 16x/~Tr 

16x/27rc~r~ ~p 

~ (:x). 

The  proof  of Theo rem 3.2 is now complete.  

References 

[1] W. Bergweiler, Maximum modulus, characteristic, and area on the sphere, Analysis 

10 (1990), 163-176. 

[2] C.T. Chuang, Sur la croissance des fonctions, Kexue Tongbao 26 (1981), 677-684. 

[3] N.V. Govorov, On Paley's problem, ~ n k .  Anal. 3 (1969), 35-40. 

[4] W.K. Hayman, Meromorphic Functions, Oxford University Press, Oxford, 1964. 

[5] W.K. Hayman, On the characteristic of functions meromorphic in the plane and 

of their integrals, Proc. London Math. Soc. 14A (1965), 93-128. 



Vol. 86, 1994 ENTIRE FUNCTIONS 427 

[6] I.I. Marchenko and A.I. Shcherba, Growth of entire functions, Siberian Math. J. 

(Engl. Transl.) 25(1984), 598-606. 

[7] V.P. Petrenko, The growth of meromorphic functions of finite lower order, Izv. 

Akad. Nauk USSR 33 (1969), 414-454. 

[8] A.I. Shcherba, Growth characteristics of entire functions, J. Soviet Math. (3) 48 

(1990), 358-362. 

[9] T. Shimizu, On the theory of meromorphic functions, Japan J. Math. 6 (1929), 

119-171. 

[10] G. Valiron, Sur un thdor~me de M. Wiman, Opuscula Math. A. Wiman dedicata, 

1930. 

[11] A. Wahlund, t)ber einen zusammenhang zwischer dem maximalbetrage der ganzen 

funktion und seiner unteren grenze naeh dem Jensensche Theoreme, Arkiv Math. 

21A (1929), 1-34. 


