ON THE GROWTH OF ENTIRE FUNCTIONS

BY

KI-Ho KWON

Department of Mathematics, Korea Military Academy P.O.Box 77, *Gongneung-Dong, Nowon-Gu, Seoul, Korea 139-799*

ABSTRACT

Suppose that $\alpha > 1$, $0 < R < \infty$ and that f is analytic in $|z| \leq \alpha R$ with $|f(0)| \geq 1$. It is shown that for a constant d_{α} depending only on α ,

 $\log M(R, f) \leq d_{\alpha} T(R, f)^{1/2} T(\alpha R, f)^{1/2}.$

Therefore if f is entire of order $\lambda < \infty$, log $M(r, f)/T(r, f)$ has order at most $\lambda/2$. These results are shown by example to be quite precise.

1. Introduction

Let $f(z)$ be meromorphic in the complex plane. We will use freely the standard notation of Nevanlinna theory, including

$$
T(r,f),\ m(r,f),\ N(r,f),\ \log M(r,f),\ldots.
$$

In addition, we define $m_p^+(r, f)$, $1 < p < \infty$, by

$$
m_p^+(r,f) = \left[\frac{1}{2\pi}\int\limits_{0}^{2\pi} (\log^+|f(re^{i\theta})|)^p d\theta\right]^{1/p}
$$

It has long been of interest to compare the sizes of $T(r, f)$ and $\log M(r, f)$ for entire functions. In 1932 R.E.A.C. Paley conjectured that an entire function $f(z)$ of order λ satisfies

(1.1)
$$
\lim_{r \to \infty} \frac{\log M(r, f)}{T(r, f)} \leq \begin{cases} \frac{\pi \lambda}{\sin \pi \lambda}, & \lambda \leq \frac{1}{2}, \\ \pi \lambda, & \lambda > \frac{1}{2}. \end{cases}
$$

Received March 1, 1992

410 KI-HO KWON Isr. J. Math.

This conjecture was proved by Valiron [10] and Wahlund [11] for $\lambda < \frac{1}{2}$ in 1935. The first complete proof was given by Govorov [3] in 1969. Petrenko [7] has established that the inequality (1.1) remains valid if the order λ is replaced by the lower order μ and $f(z)$ is assumed to be meromorphic.

The situation is quite different for entire functions of infinite order. In fact, for such functions

$$
T(r, f) = o(\log M(r, f)), \quad r \to \infty,
$$

is possible. An upper bound for $\log M(r, f)$ in terms of $T(r, f)$ was obtained by Shimizu [9] in 1929 when he showed that for each number $k > 1$ and each entire function $f(z)$

$$
\lim_{r \to \infty} \frac{\log M(r, f)}{T(r, f)[\log T(r, f)]^k} = 0.
$$

Related results can be found in papers by C. T. Chuang [2], I.I. Marchenko and A. I. Shcherba [6], W. Bergweiler [1], and A. I. Shcherba [8].

We note that all the upper bounds mentioned above have exceptional sets. Less attention seems to have been given to obtaining upper bounds for $\log M(r, f)$ in terms of $T(r, f)$ having no exceptional set. From the results of W. K. Hayman in $[5]$ it follows that for any increasing function $g(t)$ there exists an entire function $f(z)$ such that

$$
\overline{\lim_{r\to\infty}}\,\frac{\log M(r,f)}{g(T(r,f))}=\infty.
$$

This means that we cannot estimate $\log M(r, f)$ from above in terms of $T(r, f)$ for all $r \in (0, \infty)$ for the class of all entire functions. For entire functions of finite order, A. I. Shcherba [8] obtained in 1985 that for any number $k > 0$,

$$
\lim_{r \to \infty} \frac{\log M(r, f)}{\exp\{kT(r, f)\}} = 0.
$$

In this paper, we show that for an entire function $f(z)$ of order $\lambda < \infty$ and $r \geq r(\varepsilon),$

(1.2)
$$
\log M(r, f) \leq r^{\frac{\lambda}{2} + \varepsilon} T(r, f), \quad \varepsilon > 0.
$$

Inequality (1.2) follows immediately from Theorem 2.2, which asserts that

(1.3)
$$
\log M(r, f) \leq d_{\alpha} T(r, f)^{\frac{1}{2}} T(\alpha r, f)^{\frac{1}{2}},
$$

for all entire f with $|f(0)| \ge 1$ and all $r > 0$, where $\alpha > 1$ and d_{α} is a constant depending only on α . The inequality (1.3) improves the well-known inequality

(1.4)
$$
\log M(r, f) \leq \frac{R+r}{R-r}T(R, f), \quad 0 < r < R,
$$

which follows from the Poisson-Jensen formula. All the facts we mentioned above have analogues for $m_p^+(r, f)$.

In section 3 we construct examples, using a technique which was introduced by W. K. Hayman [5] in his study of the comparative sizes of $T(r, f)$ and $T(r, f')$ for meromophic functions and also used by A. I. Shcherba $[8]$, to show all the results of section 2 are best possible.

2. Main Results

In this section we obtain upper bounds for $\log M(r, f)$ in terms of the Nevanlinna characteristic for entire functions with no exceptional set of r. We first need the following estimate for $\partial \log |f(re^{i\theta})|/\partial r$.

LEMMA 2.1: Let $1 < \beta < e$ and let $0 < R < \infty$. Suppose that $f(z)$ is analytic in $|z| \leq \beta^2 R$ with $|f(0)| \geq 1$, that $f(z)$ has no zeros in $|z| < R$, and that $0 \leq \theta < 2\pi$. *Then for* $R/2 \leq r < R$ *, we have*

$$
\frac{\partial \log |f(re^{i\theta})|}{\partial r} \le c_\beta \frac{T(\beta^2 R, f)}{R},
$$

where

$$
c_{\beta}=\frac{6\beta}{(\beta-1)^2}.
$$

Proof. Let a_n be the zeros of $f(z)$ and let $w = re^{i\theta}, R/2 \le r \le R$, and $0 \le$ θ < 2π . Without loss of generality we may assume $|a_n| \neq \beta R$ for all n. The differentiated Poisson-Jensen formula [4, p. 22] gives

$$
\frac{wf'(w)}{f(w)} = \frac{1}{2\pi} \int_0^{2\pi} \log|f(\beta Re^{i\varphi})| \frac{2w\beta Re^{i\varphi}}{(\beta Re^{i\varphi} - w)^2} d\varphi
$$

$$
+ \sum_{|a_n| < \beta R} \left(\frac{w}{w - a_n} + \frac{\bar{a_n}w}{(\beta R)^2 - \bar{a_n}w} \right).
$$

Hence

(2.1)
$$
\operatorname{Re}\left[\frac{wf'(w)}{f(w)}\right] \leq \frac{2r\beta R}{(\beta R - r)^2} \left(\frac{1}{2\pi} \int_0^{2\pi} |\log|f(\beta R e^{i\varphi})||d\varphi\right) + \sum_{|a_n| < \beta R} \left[\operatorname{Re}\left(\frac{w}{w - a_n}\right) + \frac{|a_n|r}{(\beta R)^2 - |a_n|r}\right].
$$

Since $\xi = z/(z - a)$ maps the circle $|z| = |a|$ to the line Re(ξ) = $\frac{1}{2}$, we have for $|a| > r = |w|$ that

$$
\operatorname{Re}\left[\frac{w}{w-a}\right] < \frac{1}{2}.
$$

By assumption, $f(z)$ has no zeros in $|z| < R$. Therefore $|a_n| \geq R > r$ for all $n = 1, 2, \ldots$, and we have

$$
\text{(2.2)} \hspace{1cm} \text{Re}\left[\frac{w}{w-a_n}\right] < \frac{1}{2}.
$$

It is trivial to show for $|a_n| < \beta R$ that

(2.3)
$$
\frac{|a_n|r}{(\beta R)^2 - |a_n|r} \leq \frac{r}{\beta R - r}.
$$

By assumption, we have $\log|f(0)| \ge 0$. Therefore Jensen's formula gives

 $T(\beta R, 1/f) = T(\beta R, f) - \log |f(0)| \leq T(\beta R, f).$

Hence we obtain that

(2.4)
$$
\frac{1}{2\pi}\int_0^{2\pi}|\log|f(\beta Re^{i\varphi})||d\varphi \leq 2T(\beta R, f).
$$

Observing that

$$
r\frac{\partial \log |f(re^{i\theta})|}{\partial r} = \text{Re}\left[\frac{re^{i\theta}f'(re^{i\theta})}{f(re^{i\theta})}\right],
$$

we deduce from (2.1) , (2.2) , (2.3) , and (2.4) that

$$
\frac{\partial \log |f(re^{i\theta})|}{\partial r} \leq \frac{4\beta R}{(\beta R - r)^2}T(\beta R, f) + \left(\frac{1}{2r} + \frac{1}{\beta R - r}\right)n(\beta R, 1/f).
$$

Since $\log \beta \geq \frac{\beta - 1}{2}$ for $1 < \beta < e$, we have

$$
n(\beta R, 1/f) \leq \frac{N(\beta^2 R, 1/f)}{\log \beta} \leq \frac{2T(\beta^2 R, f)}{\beta - 1}.
$$

Hence we finally obtain that

$$
\frac{\partial \log |f(re^{i\theta})|}{\partial r} \le \frac{4\beta}{(\beta-1)^2} \left(\frac{T(\beta R, f)}{R}\right) + \left(\frac{1}{R} + \frac{1}{(\beta-1)R}\right) \frac{2T(\beta^2 R, f)}{\beta - 1}
$$

$$
\le \left(\frac{6\beta}{(\beta-1)^2}\right) \frac{T(\beta^2 R, f)}{R}.
$$

This proves the lemma.

We now use Lemma 2.1 to obtain our main results.

THEOREM 2.2: *Suppose that* $1 < \alpha < e^2$ and $0 < R < \infty$. Let $f(z)$ be analytic $|z| \leq \alpha R$ with $|f(0)| \geq 1$, and let $1 < p < \infty$. Then we have

(2.5)
$$
\log M(R, f) \leq d_{\alpha} T(R, f)^{\frac{1}{2}} T(\alpha R, f)^{\frac{1}{2}}
$$

and

(2.6)
$$
m_p^+(R, f) \leq d_{\alpha}^{\frac{p-1}{p}} T(R, f)^{\frac{p+1}{2p}} T(\alpha R, f)^{\frac{p-1}{2p}}
$$

where
$$
d_{\alpha} = \frac{4\sqrt{3}\alpha^{\frac{1}{2}}(\alpha^{\frac{1}{2}}+1)}{\alpha-1}
$$

We show that the results of Theorem 2.2 are quite precise in Theorem 3.2 (a) and (b).

Proof'.

(i) Suppose first that $f(z)$ has no zeros in $|z| < R$. We choose θ_0 in $[0, 2\pi)$ so that

$$
\log M(R, f) = \log |f(Re^{i\theta_0})| > 0.
$$

For $\frac{R}{2} \leq R_1 < R$, we use Lemma 2.1 (with the choice $\beta^2 = \alpha$) and (1.4) to obtain

$$
\log M(R, f) = \log |f(R_1 e^{i\theta_0})| + \int_{R_1}^R \frac{\partial \log |f(re^{i\theta_0})|}{\partial r} dr
$$

(2.7)

$$
\leq \log M(R_1, f) + \int_{R_1}^R c_\beta \frac{T(\beta^2 R, f)}{R} dr
$$

$$
\leq \frac{2R}{R - R_1} T(R, f) + (R - R_1) c_\beta \frac{T(\beta^2 R, f)}{R}.
$$

Now choose R_1 such that

(2.8)
$$
R - R_1 = \frac{\log M(R, f)}{c_\beta T (\beta^2 R, f)} \left(\frac{R}{2}\right).
$$

We claim that $R_1 \geq \frac{R}{2}$. In fact, by (1.4)

$$
\frac{\log M(R, f)}{c_{\beta}T(\beta^2 R, f)} \le \frac{(\beta - 1)^2(\beta^2 + 1)}{6\beta(\beta^2 - 1)} = \frac{(\beta - 1)(\beta^2 + 1)}{6\beta(\beta + 1)} < \frac{e^2 + 1}{12} < 1
$$

since $1 < \beta < e$. This establishes our claim. Hence it follows from (2.7) and (2.8) that (0.000)

$$
\log M(R, f) \leq 4c_{\beta} \frac{T(R, f)T(\beta^2 R, f)}{\log M(R, f)} + \frac{1}{2} \log M(R, f).
$$

Therefore we conclude

$$
\log M(R, f) \le (8c_{\beta})^{\frac{1}{2}} T(R, f)^{\frac{1}{2}} T(\beta^2 R, f)^{\frac{1}{2}}.
$$

Since $\alpha=\beta^2$, we get

$$
\log M(R, f) \leq d_{\alpha} T(R, f)^{\frac{1}{2}} T(\alpha R, f)^{\frac{1}{2}},
$$

where

$$
d_{\alpha}=\frac{4\sqrt{3}\alpha^{\frac{1}{2}}(\alpha^{\frac{1}{2}}+1)}{\alpha-1}.
$$

(ii) In the general case, if a_n are the zeros of $f(z)$, set

$$
g(z) = f(z) \prod_{|a_n| < R} \frac{R^2 - \bar{a_n} z}{R(z - a_n)}.
$$

Then $g(z)$ has no zeros in $|z| < R$, and $|g(0)| \ge 1$. We may apply the reasoning of (i) to the function $g(z)$ to obtain

(2.9)
$$
\log M(R,g) \leq d_{\alpha} T(R,g)^{\frac{1}{2}} T(\alpha R,g)^{\frac{1}{2}}.
$$

Since

$$
|g(z)| = |f(z)| \quad \text{on} \quad |z| = R
$$

and

 $|g(z)| \leq |f(z)|$ on $|z| = \alpha R$,

we have

$$
(2.10) \t\t \tlog M(R,g) = \log M(R,f),
$$

$$
(2.11) \t\t T(R,g) = T(R,f),
$$

and

$$
(2.12) \t\t T(\alpha R, g) \le T(\alpha R, f).
$$

Hence it follows immediately from (2.9) , (2.10) , (2.11) , and (2.12) that

$$
\log M(R, f) \leq d_{\alpha} T(R, f)^{\frac{1}{2}} T(\alpha R, f)^{\frac{1}{2}}.
$$

This proves (2.5).

(iii) Finally, a simple observation gives (2.6). In fact,

$$
[m_p^+(R, f)]^p = \frac{1}{2\pi} \int_0^{2\pi} (\log^+ |f(Re^{i\theta})|)^p d\theta
$$

\n
$$
\leq \frac{1}{2\pi} \int_0^{2\pi} (\log M(R, f))^{p-1} \log^+ |f(Re^{i\theta})| d\theta
$$

\n
$$
= \log M(R, f)^{p-1} T(R, f) \leq d_{\alpha}^{p-1} T(R, f)^{\frac{p+1}{2}} T(\alpha R, f)^{\frac{p-1}{2}}.
$$

This establishes (2.6) and the proof of Theorem 2.2 is complete.

For entire functions of finite order, we now obtain upper bounds for log *M(r, f)* and $m_p^+(r, f)$ in terms of $T(r, f)$.

COROLLARY 2.3: Let $f(z)$ be entire of order λ , $0 < \lambda < \infty$. Then for any $\varepsilon > 0$ there exists a number $R(\varepsilon)$ such that

(2.13)
$$
\log M(R, f) \leq R^{\frac{2}{2}+\epsilon} T(R, f), \quad R > R(\epsilon),
$$

and

(2.14)
$$
m_p^+(R, f) \leq R^{\frac{(p-1)}{2p}\lambda + \varepsilon} T(R, f), \quad R > R(\varepsilon).
$$

We show that the results of Corollary 2.3 are best possible in Theorem 3.2 (c).

Proof: Without loss of generality we may assume that $|f(0)| \geq 1$. If not, consider the function $f(z) + 2$. By setting $\alpha = 2$ in (2.5), we get

$$
(2.15)\ \log M(R,f)\leq 4\sqrt{6}(\sqrt{2}+1)T(R,f)^{\frac{1}{2}}T(2R,f)^{\frac{1}{2}}\leq 40T(2R,f)^{\frac{1}{2}}T(R,f).
$$

By the definition of order, we have

(2.16)
$$
T(2R, F) = 0((2R)^{\lambda + \varepsilon}) = 0(R^{\lambda + \varepsilon}), \quad R \to \infty.
$$

Hence (2.13) follows from (2.15) and (2.16).

Now, by setting $\alpha = 2$ in (2.6), we get

$$
(2.17) \t m_p^+(R, f) \leq [4\sqrt{6}(\sqrt{2}+1)]^{\frac{p-1}{p}}T(R, f)^{\frac{p+1}{2p}}T(2R, f)^{\frac{p-1}{2p}} \leq 40T(2R, f)^{\frac{p-1}{2p}}T(R, f).
$$

Hence (2.14) also follows from (2.16) and (2.17) .

3. Examples

We now proceed to construct examples of entire functions which show that Theorem 2.2 and Corollary 2.3 are quite precise. Our examples are based on techniques introduced by Hayman [5]. We let

$$
f(z) = f(z, c) = \exp\left(\frac{c}{1-z}\right), \quad c \ge 1.
$$

Since Re $\left[\frac{c}{1-z}\right]$ is positive and harmonic in $|z| < 1$, we have, for $0 < k < 1$,

$$
T(k,f)=\log f(0)=c
$$

and

$$
\log M(k,f)=\frac{c}{1-k}
$$

We set

$$
f(z, c) = \sum_{n=0}^{\infty} a_n z^n,
$$

$$
P_N(z, c) = \sum_{n=0}^N a_n z^n,
$$

and

$$
K_N = 1 - 8\left(\frac{2c}{N}\right)^{\frac{1}{2}}.
$$

We need the following two lemmas of Hayman.

LEMMA A [5]: *If* $K_N > \frac{1}{2}$ and $|z| = r$, then we have

- (a) $|P_N(z,c) f(z,c)| < 1, r \le K_N$,
- (b) $|T(r, P_N(z, c)) c| \leq \log 2, r \leq K_N$,
- (c) $T(r, P_N(z, c)) \leq 17(cN)^{\frac{1}{2}} + N \log^+ r, r > K_N.$

We suppose that r_n , c_n , and N_n are increasing sequences satisfying the following conditions for all positive integers n :

(3.1) (i)
$$
r_1 = 1, r_{n+1} \ge 2r_n,
$$

(ii)
$$
c_n \geq n,
$$

and

(iii)
$$
N_n \geq 512c_n,
$$

where the ${\cal N}_n$ are positive integers. We set

(3.2)
$$
F(z) = \sum_{n=1}^{\infty} e^{-4c_n} P_{N_n}\left(\frac{z}{r_n}, c_n\right)
$$

and have

LEMMA B [5]: With the above notation $F(z)$ is an entire function. Further, if $r_{\nu}/2 \le r < r_{\nu+1}/2$, we have, for $|z| = r$ and $\nu \ge 2$,

(a)
$$
T(r, F) \leq T\left(\frac{r}{r_{\nu}}, e^{-4c_{\nu}} P_{N_{\nu}}(z, c_{\nu})\right) + \sum_{n=1}^{\nu-1} N_n \left(\log \frac{r}{r_n} + 2\right),
$$

and

(b)
$$
\Big|\sum_{n=\nu+1}^{\infty}e^{-4c_n}P_{N_n}\left(\frac{z}{r_n},c_n\right)\Big|<1.
$$

In addition we need the following elementary lemma.

LEMMA 3.1: *If* $1 < p < \infty$ and $0 < k < 1$, then

$$
m_p^+(k, f(z, c)) \ge \frac{c}{2\pi(1-k)^{\frac{p-1}{p}}}.
$$

Proof: If $|\theta| \leq 1 - k$, then we have

$$
\operatorname{Re}\left(\frac{1}{1 - ke^{i\theta}}\right) = \frac{1 - k\cos\theta}{1 + k^2 - 2k\cos\theta} \ge \frac{1 - k}{(1 - k)^2 + 2k(1 - \cos\theta)}
$$

$$
\ge \frac{1 - k}{(1 - k)^2 + 2k(\theta^2/2)} \ge \frac{1 - k}{(1 - k)^2 + k(1 - k)^2} \ge \frac{1}{2(1 - k)}.
$$

Hence

$$
[m_p^+(k, f(z, c))]^p = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[\log^+ \left| \exp\left(\frac{c}{1 - ke^{i\theta}}\right) \right| \right]^p d\theta
$$

$$
= \frac{c^p}{2\pi} \int_{-\pi}^{\pi} \left[\text{Re}\left(\frac{1}{1 - ke^{i\theta}}\right) \right]^p d\theta \ge \frac{c^p}{2\pi} 2(1 - k) \left[\frac{1}{2(1 - k)} \right]^p
$$

$$
= \frac{1}{\pi 2^p} c^p (1 - k)^{1 - p}.
$$

This proves the lemma.

Now we are prepared to prove

THEOREM 3.2: Let $\varphi(r)$ be any positive increasing function such that

$$
\varphi(r)\to\infty,\quad r\to\infty,
$$

and let $0 < \lambda < \infty$. Then there exists an entire function $F_1(z)$ such that

$$
T(r, F_1) = 0(\varphi(r)(\log r)^2), \quad r \to \infty,
$$

an entire function $F_2(z)$ of order λ and an entire function $F_3(z)$ of infinite order for which if $\varepsilon > 0$, $1 < \alpha < 2$, and $1 < p < \infty$, we have

(a)
$$
\overline{\lim}_{r \to \infty} \frac{\log M(r, F_i)}{T(r, F_i)^{\frac{1}{2}+\epsilon}T(\alpha r, F_i)^{\frac{1}{2}-\epsilon}} = \infty
$$

and

$$
\overline{\lim}_{r\to\infty}\frac{m_p^+(r,F_i)}{T(r,F_i)^{\frac{p+1}{2p}+\epsilon}T(\alpha r,F_i)^{\frac{p-1}{2p}-\epsilon}}=\infty, \quad i=1,2,3;
$$

(b)
$$
\overline{\lim}_{r \to \infty} \frac{\log M(r, F_i)}{T(\alpha r, F_i)} \ge \frac{1}{\alpha - 1} (4 - 3\alpha)
$$

and

$$
\overline{\lim}_{r\to\infty}\frac{m_p^+(r,F_i)}{T(\alpha r,F_i)}\geq \left(\frac{1}{\alpha-1}\right)^{\frac{p-1}{p}}\left\{\frac{1}{2\pi}-4(\alpha-1)^{\frac{p-1}{p}}\right\},\quad i=1,2,3;
$$

(c)
$$
\overline{\lim_{r \to \infty}} \frac{\log M(r, F_2)}{T(r, F_2)r^{\frac{1}{2}}} = \infty
$$

and

$$
\overline{\lim}_{r \to \infty} \frac{m_p^+(r, F_2)}{T(r, F_2)r^{\frac{p-1}{2p}}\lambda} = \infty.
$$

Remarks:

- (i) We observe that the conclusions in (b) are of interest only for values of α slightly greater than 1.
- (ii) For entire functions $f(z)$ with

(3.3)
$$
T(r, f) = 0(\log r)^2 \text{ as } r \to \infty,
$$

W. K. Hayman has shown in [5] that

(3.4)
$$
\lim_{r \to \infty} \frac{\log M(r, f)}{T(r, f)} = 1.
$$

Parts (a) and (b) of Theorem 3.2, applied to F_1 , show that in general (3.4) fails for entire functions not satisfying (3.3).

- (iii) By considering F_1 , F_2 , and F_3 , we see that inequalities (a) and (b) can occur for entire functions of any growth rate exceeding (3.3).
- (iv) Part (a) shows that if in Theorem 2.2 we consider possible pairs of exponents for $T(R, f)$ and $T(\alpha R, f)$ with sum 1, then the choice of exponent $\frac{1}{2}$ on $T(\alpha R, f)$ in (2.5) and $\frac{p-1}{2p}$ on $T(\alpha R, f)$ in (2.6) cannot be improved.
- (v) From part (a) we deduce that

$$
\overline{\lim}_{r \to \infty} \frac{m_p^+(r, F_1)}{T(r, F_1)} = \infty,
$$

which shows that even a weakened form of (3.4) obtained by replacing the numerator by $m_p^+(r, f)$ does not hold without the restriction (3.3).

(vi) In part (b), we see that the constant d_{α} of Theorem 2.2 is quite precise in the sense that (2.5) and (2.6) do not hold for any choice of d_{α} satisfying

$$
d_{\alpha} = o\left(\frac{1}{\alpha - 1}\right), \quad \alpha \to 1^+.
$$

- (vii) Part (c) shows that in Corollary 2.3 the exponents on R on the right side of (2.13) and (2.14) cannot be decreased.
- **Proof.** Suppose that the sequences r_n , c_n and N_n satisfy (3.1) as well as

$$
(3.5)(i) \t\t\t r_1 = 1, \t r_{n+1} \ge 4r_n,
$$

$$
\text{(ii)} \quad nN_{n-1}\log r_n = o(c_n), \quad n \to \infty,
$$

and

(iii)
$$
\frac{N_n}{c_n} \to \infty, \text{ as } n \to \infty.
$$

420 KI-HO KWON Isr. J. Math.

We also assume that $F(z)$ is constructed as in (3.2) with these new sequences. Later we will make specific choices of c_n, r_n , and N_n for each F_i , $1 \leq i \leq 3$, satisfying (3.5) and of course (3.1) . Next we set, for all positive integers n,

$$
R_n = r_n K_{N_n}
$$
 and $S_n = \frac{R_n}{\alpha}$,

where

$$
K_{N_n} = 1 - 8\left(\frac{2c_n}{N_n}\right)^{\frac{1}{2}} > \frac{1}{2}.
$$

Then we have

LEMMA 3.3: With the above notation, for $r_{\nu}/2 \le r \le R_{\nu}$, $\nu \ge 2$, we have

(a)
$$
\log M(r, F) \geq \log M\left(\frac{r}{r_{\nu}}, f(z, c_{\nu})\right) - \{4 + o(1)\}c_{\nu}, \quad \nu \to \infty,
$$

and

(b)
$$
m_p^+(r, F) \ge m_p^+\left(\frac{r}{r_{\nu}}, f(z, c_{\nu})\right) - \{4 + o(1)\}c_{\nu}, \quad \nu \to \infty.
$$

Proof: To prove this lemma, we suppose that $|z| \le R_{\nu}$ and $n \le \nu - 1$. Then by the inequality (1.4) and Lemma A (c) we obtain

$$
\log \left| P_{N_n} \left(\frac{z}{r_n}, c_n \right) \right| \le \log M \left(\frac{R_{\nu}}{r_n}, P_{N_n}(z, c_n) \right) \le 3T \left(2 \frac{R_{\nu}}{r_n}, P_{N_n}(z, c_n) \right)
$$

\n
$$
\le 3 \left\{ 17(c_n N_n)^{\frac{1}{2}} + N_n \log^+ \left(2 \frac{R_{\nu}}{r_n} \right) \right\} \le 3 \{ 17 N_{\nu - 1} + N_{\nu - 1} \log(2R_{\nu}) \}
$$

\n
$$
\le 60 N_{\nu - 1} \log R_{\nu}.
$$

Therefore

(3.6)
$$
\left|\sum_{n=1}^{\nu-1} e^{-4c_n} P_{N_n}\left(\frac{z}{r_n}, c_n\right)\right| \leq (\nu-1) e^{60N_{\nu-1}\log R_{\nu}}.
$$

Hence we deduce from Lemma A (a), Lemma B (b) and (3.6) that for $r_{\nu}/2 \leq$ $|z| \le R_\nu,$

$$
|F(z)| \ge \left| e^{-4c_{\nu}} f\left(\frac{z}{r_{\nu}}, c_{\nu}\right) \right| - e^{-4c_{\nu}} \left| P_{N_{\nu}}\left(\frac{z}{r_{\nu}}, c_{\nu}\right) - f\left(\frac{z}{r_{\nu}}, c_{\nu}\right) \right|
$$

(3.7)

$$
-\left|\sum_{n\neq\nu}e^{-4c_n}P_{N_n}\left(\frac{z}{r_n},c_n\right)\right|\geq\left|e^{-4c_\nu}f\left(\frac{z}{r_\nu},c_\nu\right)\right|-\nu e^{60N_{\nu-1}\log R_\nu}.
$$

From familiar properties of \log^+ , we conclude from (3.5) (ii) and (3.7) that

$$
\log^+|F(z)| \ge \left\{ \log^+ \left| f\left(\frac{z}{r_{\nu}}, c_{\nu}\right) \right| - 4c_{\nu} \right\} - \log^+ \nu - 60N_{\nu-1} \log R_{\nu} - \log 2
$$

$$
(3.8)
$$

$$
= \log^+ \left| f\left(\frac{z}{r_{\nu}}, c_{\nu}\right) \right| - (4 + o(1))c_{\nu}, \quad \nu \to \infty.
$$

The conclusion of Lemma 3.3 is immediate from (3.8).

We now estimate $T(R_{\nu}, F)$ and $T(\alpha R_{\nu}, F)$ from above and log $M(R_{\nu}, F)$ and $m_p^+(R_\nu, F)$ from below. Recall that $R_\nu = K_{N_\nu} r_\nu > r_\nu/2$ and

(3.9)
$$
K_{N_{\nu}} = 1 - 8 \left(\frac{2c_{\nu}}{N_{\nu}} \right)^{\frac{1}{2}}.
$$

Since by LemmaA (b)

$$
T\left(\frac{R_{\nu}}{r_{\nu}},e^{-4c_{\nu}}P_{N_{\nu}}(z,c_{\nu})\right)\leq T(K_{N_{\nu}},P_{N_{\nu}}(z,c_{\nu}))\leq c_{\nu}+\log 2,
$$

we deduce from Lemma B (a) and (3.5) (ii) that

$$
T(R_{\nu}, F) \le T\left(\frac{R_{\nu}}{r_{\nu}}, e^{-4c_{\nu}} P_{N_{\nu}}(z, c_{\nu})\right) + \sum_{n=1}^{\nu-1} N_n \left(\log \frac{R_{\nu}}{r_n} + 2\right)
$$

(3.10)

$$
\leq (c_{\nu} + \log 2) + (\nu - 1)N_{\nu - 1}(\log R_{\nu} + 2) \leq (1 + o(1))c_{\nu}, \quad \nu \to \infty.
$$

Since by (3.5) (i)

$$
\frac{r_{\nu}}{2} < R_{\nu} < \alpha R_{\nu} < 2r_{\nu} \le \frac{r_{\nu+1}}{2},
$$

we may choose $r = \alpha R_{\nu}$ in Lemma B (a) and then obtain from Lemma A (c) and (3.5) that

$$
T(\alpha R_{\nu}, F) \leq T(\alpha K_{N_{\nu}}, e^{-4c_{\nu}} P_{N_{\nu}}(z, c_{\nu})) + \sum_{n=1}^{\nu-1} N_n \left(\log \frac{\alpha R_{\nu}}{r_n} + 2 \right)
$$

(3.11)

$$
\leq T(\alpha K_{N_{\nu}}, P_{N_{\nu}}(z, c_{\nu})) + (\nu - 1) N_{\nu-1} (\log r_{\nu} + \log \alpha + 2)
$$

$$
\leq 17 (c_{\nu} N_{\nu})^{\frac{1}{2}} + N_{\nu} \log^{+}(\alpha K_{N_{\nu}}) + o(c_{\nu})
$$

$$
\leq (1 + o(1)) N_{\nu} \log \alpha, \quad \nu \to \infty.
$$

422 KI-HO KWON Isr. J. Math

Recall that

(3.12)
$$
\log M(K_{N_{\nu}}, f(z, c_{\nu})) = \frac{c_{\nu}}{1 - K_{N_{\nu}}}.
$$

Thus we deduce from Lemma 3.1, Lemma 3.3, (3.5) (iii), and (3.9) that, for $\nu\geq2,$

$$
\log M(R_{\nu}, F) \ge \log M(K_{N_{\nu}}, f(z, c_{\nu})) - \{4 + o(1)\}c_{\nu}
$$
\n
$$
= \frac{c_{\nu}}{1 - K_{N_{\nu}}} - \{4 + o(1)\}c_{\nu} = \left\{\frac{1}{8\sqrt{2}} - o(1)\right\}c_{\nu}^{\frac{1}{2}}N_{\nu}^{\frac{1}{2}}, \quad \nu \to \infty,
$$

and

$$
m_p^+(R_\nu, F) \ge m_p^+\left(K_{N_\nu}, f(z, c_\nu)\right) - \{4 + o(1)\}c_\nu
$$

\n
$$
\ge \frac{1}{2\pi} \left\{ \frac{c_\nu}{\left(1 - K_{N_\nu}\right)^{\frac{p-1}{p}}} \right\} - \{4 + o(1)\}c_\nu
$$

\n(3.14)
\n
$$
= \frac{1}{2\pi} \left(\frac{1}{8\sqrt{2}}\right)^{\frac{p-1}{p}} c_\nu^{\frac{p+1}{2p}} N_\nu^{\frac{p-1}{2p}} - \{4 + o(1)\}c_\nu
$$

\n
$$
\ge \left(\frac{1}{16\sqrt{2}\pi} - o(1)\right) c_\nu^{\frac{p+1}{2p}} N_\nu^{\frac{p-1}{2p}}, \quad \nu \to \infty.
$$

Now recall that $1 < \alpha < 2$ and $S_{\nu} = R_{\nu}/\alpha = r_{\nu}K_{N_{\nu}}/\alpha$. Since $K_{N_{\nu}} \to 1$ as $\nu\rightarrow\infty,$ there exists a positive integer ν_0 such that if $\nu\geq\nu_0,$ then

$$
\frac{r_{\nu}}{2}\leq S_{\nu}\leq R_{\nu}.
$$

Hence we may choose $r = S_{\nu}$ ($\nu \ge \nu_0$) in Lemma 3.3 to obtain by Lemma 3.1 and an obvious variant of (3.12) that

(3.15)
\n
$$
\log M(S_{\nu}, F) \ge \log M\left(\frac{S_{\nu}}{r_{\nu}}, f(z, c_{\nu})\right) - \{4 + o(1)\}\}c_{\nu}
$$
\n
$$
= \frac{c_{\nu}}{1 - K_{N_{\nu}}/\alpha} - \{4 + o(1)\}\}c_{\nu}
$$
\n
$$
= \left\{\frac{\alpha}{\alpha - K_{N_{\nu}}} - 4 - o(1)\right\}c_{\nu}, \quad \nu \to \infty,
$$

and

$$
m_p^+(S_{\nu}, F) \ge m_p^+\left(\frac{S_{\nu}}{r_{\nu}}, f(z, c_{\nu})\right) - \{4 + o(1)\}\, c_{\nu}
$$
\n
$$
= \frac{1}{2\pi} \left\{ \frac{c_{\nu}}{\left(1 - K_{N_{\nu}}/\alpha\right)^{\frac{p-1}{p}}} \right\} - \{4 + o(1)\} c_{\nu}
$$
\n
$$
= \left\{ \frac{1}{2\pi} \left(\frac{\alpha}{\alpha - K_{N_{\nu}}} \right)^{\frac{p-1}{p}} - 4 - o(1)\right\} c_{\nu}, \quad \nu \to \infty.
$$

Thus we conclude by (3.10) , (3.11) , (3.13) , (3.14) , and (3.5) (iii) that for any $\varepsilon>0,$

$$
\lim_{r \to \infty} \frac{\log M(r, F)}{T(r, F)^{\frac{1}{2} + \epsilon} T(\alpha r, F)^{\frac{1}{2} - \epsilon}} \geq \lim_{\nu \to \infty} \frac{\log M(R_{\nu}, F)}{T(R_{\nu}, F)^{\frac{1}{2} + \epsilon} T(\alpha R_{\nu}, F)^{\frac{1}{2} - \epsilon}}
$$
\n
$$
\lim_{\nu \to \infty} \frac{\{1/8\sqrt{2} - o(1)\} c_{\nu}^{\frac{1}{2}} N_{\nu}^{\frac{1}{2}}}{\{\{1 + o(1)\} c_{\nu}\}^{\frac{1}{2} + \epsilon} [\{1 + o(1)\} N_{\nu} \log \alpha]^{\frac{1}{2} - \epsilon}}
$$
\n
$$
= \lim_{\nu \to \infty} \frac{(N_{\nu} c_{\nu}^{-1})^{\epsilon}}{8\sqrt{2} (\log \alpha)^{\frac{1}{2} - \epsilon}} = \infty,
$$

and

$$
\lim_{r \to \infty} \frac{m_p^+(r, F)}{T(r, F)^{\frac{p+1}{2p} + \varepsilon} T(\alpha r, F)^{\frac{p-1}{2p} - \varepsilon}} \ge \lim_{\nu \to \infty} \frac{m_p^+(R_{\nu}, F)}{T(R_{\nu}, F)^{\frac{p+1}{2p} + \varepsilon} T(\alpha R_{\nu}, F)^{\frac{p-1}{2p} - \varepsilon}}
$$
\n(3.18)\n
$$
\ge \lim_{\nu \to \infty} \frac{\{1/16\sqrt{2}\pi - o(1)\}c_{\nu}^{\frac{p+1}{2p} N_{\nu}^{\frac{p-1}{2p}}}}{\{\{1 + o(1)\}c_{\nu}\}_{\frac{p+1}{2p} + \varepsilon}^{\frac{p+1}{2p} + \varepsilon}\{\{1 + o(1)\}N_{\nu}\log \alpha\}_{\frac{p-1}{2p} + \varepsilon}} \ge \lim_{\nu \to \infty} \frac{(N_{\nu}c_{\nu}^{-1})^{\varepsilon}}{16\sqrt{2}\pi(\log \alpha)^{\frac{p-1}{2p} - \varepsilon}} = \infty.
$$

Thus such an F satisfies conclusion (a) of Theorem 3.2. Noting $\alpha S_{\nu} = R_{\nu}$, we conclude by (3.10) and (3.15) that

$$
(3.19) \quad \overline{\lim}_{r \to \infty} \frac{\log M(r, F)}{T(\alpha r, F)} \ge \overline{\lim}_{\nu \to \infty} \frac{\log M(S_{\nu}, F)}{T(R_{\nu}, F)} \ge \overline{\lim}_{\nu \to \infty} \frac{\left\{ \frac{\alpha}{\alpha - K_{N_{\nu}}} - 4 - o(1) \right\} c_{\nu}}{\left\{ 1 + o(1) \right\} c_{\nu}}
$$
\n
$$
= \frac{\alpha}{\alpha - 1} - 4 = \frac{4 - 3\alpha}{\alpha - 1}.
$$

We also have by (3.10) and (3.16) that

$$
\lim_{r \to \infty} \frac{m_p^+(r, F)}{T(\alpha r, F)} \ge \lim_{\nu \to \infty} \frac{m_p^+(S_{\nu}, F)}{T(R_{\nu}, F)}
$$
\n(3.20)
$$
\ge \lim_{\nu \to \infty} \frac{\left\{\frac{1}{2\pi} \left(\frac{\alpha}{\alpha - K_{N_{\nu}}}\right)^{\frac{p-1}{p}} - 4 - o(1)\right\} c_{\nu}}{\left\{1 + o(1)\right\} c_{\nu}}
$$
\n
$$
= \frac{1}{2\pi} \left(\frac{\alpha}{\alpha - 1}\right)^{\frac{p-1}{p}} - 4 \ge \left(\frac{1}{\alpha - 1}\right)^{\frac{p-1}{p}} \left\{\frac{1}{2\pi} - 4(\alpha - 1)^{\frac{p-1}{p}}\right\}.
$$

Thus such an F satisfies conclusions (b) of Theorem 3.2.

Finally, our functions $F_i(z)$ $(i = 1, 2, 3)$ are to be constructed just as $F(z)$ is, with carefully chosen sequences r_n , c_n , and N_n satisfying (3.1) and (3.5).

We first construct $F_1(z)$ by choosing r_n, c_n , and N_n as follows. We set $r_1 =$ $c_1 = 1$ and $N_1 = 512$. Suppose that r_n, c_n , and N_n have been chosen for $n < \nu$. Then we choose r_{ν} so large that

(3.21) (i)
$$
r_{\nu} > 4r_{\nu-1}
$$
 and $\varphi\left(\frac{r_{\nu}}{2}\right) > \nu^3 N_{\nu-1}$,

where $\varphi(r)$ is the function occurring in the hypothesis of Theorem 3.2. This is possible since $\varphi(r) \to \infty$ as $r \to \infty$. We then set

(3.21) (ii)
$$
N_{\nu} = \left[\varphi \left(\frac{r_{\nu}}{2} \right) \log r_{\nu} \right],
$$

and

(3.21) (iii)
$$
c_{\nu} = N_{\nu}/512\nu.
$$

We next construct $F_2(z)$ by choosing r_n, c_n , and N_n as follows. Let $r_1 = c_1 = 1$ and let $N_1 = 512$. Suppose that r_n, c_n , and N_n have been chosen for $n < \nu$. Then we choose r_{ν} so large that

$$
(3.22) (i) \t\t \tlog r_{\nu} > \nu N_{\nu-1} r_{\nu-1}.
$$

We set

(3.22) (ii)
$$
c_{\nu} = (\log r_{\nu})^2
$$
,

and

$$
(3.22) (iii) \t\t N\nu = [r\nu\lambda c\nu2].
$$

Finally we construct $F_3(z)$ by choosing r_n, c_n , and N_n as follows. For $n \geq 1$, we set

$$
(3.23) (i) \t\t\t\t r_n = 4^{n-1},
$$

(ii)
$$
c_n = (n!)^4,
$$

and

(iii)
$$
N_n = 512nc_n.
$$

It is easy to show that the choices of sequences in (3.21), (3.22), and (3.23) all satisfy (3.1) and (3.5). Hence $F_i(z)$ ($1 \leq i \leq 3$) are entire functions satisfying the conditions (a) and (b) of Theorem 3.2.

It remains to estimate the growth properties of $F_i(z)$. From Lemma A(c), Lemma B(a), and (3.5) (iii) we deduce for $i=1,2$ and $r_{\nu}/2 \leq r < r_{\nu+1}/2$ that

$$
T(r, F_i) \le T\left(\frac{r}{r_{\nu}}, e^{-4c_{\nu}} P_{N_{\nu}}(z, c_{\nu})\right) + 0(\nu N_{\nu-1} \log r) = 0(N_{\nu} \log r), \quad r \to \infty.
$$

Therefore by (3.21) (ii) and (3.22) (ii), (iii), we have

$$
T(r, F_1) = 0([\varphi(r_\nu/2) \log r_\nu] \log r) = 0(\varphi(r)(\log r)^2), \quad r \to \infty,
$$

and

$$
T(r, F_2) = 0(\left[r^{\lambda}_{\nu} c^2_{\nu}\right] \log r) = 0(r^{\lambda} (\log r)^5), \quad r \to \infty.
$$

Hence $F_1(z)$ satisfies the required growth condition and $F_2(z)$ has at most order λ . On the other hand, note that the Maclaurin coefficients a_n of $f(z, c_\nu)$ are all positive. Since

$$
f(z,c_{\nu})^{(n)} = \left\{ \exp\left(\frac{c_{\nu}}{1-z}\right) \right\}^{(n)} = \left\{ \frac{c_{\nu}}{(1-z)^2} \exp\left(\frac{c_{\nu}}{1-z}\right) \right\}^{(n-1)}
$$

$$
= \cdots = \frac{n!c_{\nu}}{(1-z)^{n+1}} \exp\left(\frac{c_{\nu}}{1-z}\right) + \cdots,
$$

we estimate for all n that

$$
a_n \geq c_{\nu} e^{c_{\nu}}.
$$

Hence we have

$$
\log M(er_{\nu}, F_2) = \log F_2(er_{\nu}) \ge \log P_{N_{\nu}}(e, c_{\nu}) - 4c_{\nu}
$$

$$
\ge \log(a_{N_{\nu}}e^{N_{\nu}}) - 4c_{\nu} \ge (1 - o(1))N_{\nu} = (1 - o(1))r_{\nu}^{\lambda}c_{\nu}^2, \quad \nu \to \infty.
$$

Thus $F_2(z)$ has order λ and satisfies the growth condition of the theorem.

Next we want to show that $F_3(z)$ has infinite order. By virtue of (3.13) and (3.23), we have

$$
\log M(R_{\nu}, F_3) \ge \left(\frac{1}{8\sqrt{2}} - o(1)\right) c_{\nu}^{\frac{1}{2}} N_{\nu}^{\frac{1}{2}} \ge \left(\frac{1}{8\sqrt{2}} - o(1)\right) (\nu!)^4, \quad \nu \to \infty,
$$

and

$$
R_{\nu} \leq r_{\nu} = 4^{\nu-1}.
$$

Hence for any positive number ℓ ,

$$
\overline{\lim_{\nu\to\infty}}\frac{\log M(R_{\nu},F_3)}{R_{\nu}^{\ell}}\geq \overline{\lim_{\nu\to\infty}}\frac{\left(\frac{1}{8\sqrt{2}}-o(1)\right)(\nu!)^4}{4^{\ell(\nu-1)}}=\infty.
$$

Thus F_3 has infinite order.

Finally we need to show that $F_2(z)$ satisfies (c) of Theorem 3.2. By (3.10), (3.13), (3.14), and (3.22) we have

$$
\overline{\lim}_{r \to \infty} \frac{\log M(r, F_2)}{T(r, F_2) r^{\frac{\lambda}{2}}} \ge \overline{\lim}_{\nu \to \infty} \frac{\log M(R_{\nu}, F_2)}{T(R_{\nu}, F_2) R^{\frac{\lambda}{2}}} \ge \overline{\lim}_{\nu \to \infty} \frac{\left(\frac{1}{8\sqrt{2}} - o(1)\right) c_{\nu}^{\frac{1}{2}} N_{\nu}^{\frac{1}{2}}}{(1 + o(1)) c_{\nu} R^{\frac{\lambda}{2}}}
$$
\n
$$
\ge \overline{\lim}_{\nu \to \infty} \frac{c_{\nu}^{\frac{1}{2}} (r_{\nu}^{\lambda} c_{\nu}^2)^{\frac{1}{2}}}{8\sqrt{2} c_{\nu} r_{\nu}^{\frac{\lambda}{2}}} = \overline{\lim}_{\nu \to \infty} \frac{c_{\nu}^{\frac{1}{2}}}{8\sqrt{2}} = \infty,
$$

and

$$
\overline{\lim}_{r \to \infty} \frac{m_p^+(r, F_2)}{T(r, F_2) r^{\frac{p-1}{2p} \lambda}} \ge \overline{\lim}_{\nu \to \infty} \frac{m_p^+(R_{\nu}, F_2)}{T(R_{\nu}, F_2) R_{\nu}^{\frac{p-1}{2p} \lambda}} \newline \ge \overline{\lim}_{\nu \to \infty} \frac{\left(\frac{1}{16\sqrt{2\pi}} - o(1)\right) c_{\nu}^{\frac{p+1}{2p}} N_{\nu}^{\frac{p-1}{2p}}}{(1 + o(1)) c_{\nu} R_{\nu}^{\frac{p-1}{2p} \lambda}} \newline \ge \overline{\lim}_{\nu \to \infty} \frac{c_{\nu}^{\frac{p+1}{2p}} (r_{\nu}^{\lambda} c_{\nu}^2)^{\frac{p-1}{2p} \lambda}}{16\sqrt{2\pi} c_{\nu} r_{\nu}^{\frac{p-1}{2p} \lambda}} = \overline{\lim}_{\nu \to \infty} \frac{c_{\nu}^{\frac{p-1}{2p}}}{16\sqrt{2\pi}} = \infty.
$$

The proof of Theorem 3.2 is now complete.

References

- [1] W. Bergweiler, *Maximum modulus, characteristic, and* area *on the sphere,* Analysis 10 (1990), 163-176.
- [2] C.T. Chuang, *Sur la croissance des fonctions,* Kexue Tongbao 26 (1981), 677-684.
- [3] N.V. Govorov, *On Paley's problem, Funk. Anal.* **3** (1969), 35-40.
- [4] W.K. Hayman, *Meromorphic Functions,* Oxford University Press, Oxford, 1964.
- [5] W.K. Hayman, *On the characteristic of functions meromorphic in the plane and* of their *integrals,* Proc. London Math. Soc. 14A (1965), 93-128.

- [6] I.I. Marchenko and A.I. Shcherba, *Growth of entire functions,* Siberian Math. J. (Engl. Transl.) 25(1984), 598-606.
- [7] V.P. Petrenko, The *growth of meromorphic functions* of finite *lower* order, Izv. Akad. Nauk USSR 33 (1969), 414-454.
- [8] A.I. Shcherba, *Growth characteristics of* entire *functions,* J. Soviet Math. (3) 48 (1990), 358-362.
- [9] T. Shimizu, On the *theory of meromorphic functions,* Japan J. Math. 6 (1929), 119-171.
- [10] G. Valiron, Sur un théorème de M. Wiman, Opuscula Math. A. Wiman dedicata, 1930.
- [11] A. Wahlund, Über einen zusammenhang zwischer dem maximalbetrage der ganzen *funktion* und *seiner unteren grenze naeh dem Jensensche Theoreme,* Arkiv Math. 21A (1929), 1-34.